
 pg. 1     R. Turk 9/10/2022 

Q Transforms and the g Class Invariants 

A continued fraction u() studied by Ramanujan in his famous notebooks1 is of interest and connects q-

continued fractions (QCF) to modular functions and roots of certain polynomials of discriminant2 (-d). 

 

[1] 𝑢(𝜏) = √2 ∗ 𝑞1 8⁄ ∗ ∏
(1−𝑞2𝑛−1)

(1−𝑞4𝑛−2)2
𝑛>1

=   
√2q1 8⁄
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Here q = ⅇ2𝜋ⅈτ. 

 When 𝑢(𝜏) is complex the modulus is denoted as |𝑢(𝜏)| =  𝑢(𝜏) ∗ 𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡ⅇ [𝑢(𝜏)] 

Three versions of the nome, 𝜏 containing a negative integer discriminant can be used with q transforms 

for calculating 𝑢(𝜏) and the modulus of 𝑢(𝜏) = |𝑢(𝜏)|.   

[2a]  𝜏1 = √−𝑑   

[2b]  𝜏2 =
1+√−𝑑

4
   

[2c]  𝜏3 =
1+√−𝑑

2
   

The q-transforms introduced in Chapter 31 are useful for converting QCFs of the modulus between the 

three nomes, and calculating the g class invariant for any discriminant -d and finding the k invariants 

associated with elliptic integrals.  Four of the q-transforms are shown below.  Two other transforms 

mentioned in Chapter 32 converting j-invariants are not discussed.   

[3]  R[x] = √−
2

𝑥4 +
√2√2−𝑥4

𝑥4 + √−1 +
8

𝑥8 +
2

𝑥4 +
2√2

√2−𝑥4
−

8√2

𝑥8√2−𝑥4
 

[4]  CR[x] = (−
128(3𝑥8+10𝑥16+3𝑥24)

(−1+𝑥8)4 + 64√
𝑥8+30𝑥16+255𝑥24+452𝑥32+255𝑥40+30𝑥48+𝑥56

(−1+𝑥8)8 )1 8⁄  

[5]  L2[x] = 
4𝑥4

(1+𝑥4)2 

[6]  RL[x] = (1 +
8

𝑥2 +
4√−(−2+𝑥)2(−1+𝑥)

𝑥2 −
8

𝑥
)−1 8⁄  

Let q1 = ⅇ2𝜋ⅈτ1 then 𝑢(𝜏1) is real for all integer discriminants.  

Applying the q transform CR[x] the complex 𝑢(𝜏2) is converted to the real modulus |𝑢(𝜏2)|: 

[7]   |𝑢(𝜏2)| = CR[𝑢(𝜏1)] 

Let  𝑐𝑟|𝑢(𝜏3)| = CR[𝑢(𝜏3)]*Conjugate[CR[𝑢(𝜏3)] then complex 𝑢(𝜏3) is converted to a real modulus: 

[8]   𝑐𝑟|𝑢(𝜏3)| = 2*CR[𝑢(𝜏1)] 
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Applying the inverse q transform R[x] recovers the modulus 𝑢(𝜏1). 

R[𝑐𝑟|𝑢(𝜏2)|/2]= R[|𝑢(𝜏2)| = 𝑢(𝜏1) 

From previous chapters it was shown that the g class invariant for odd discriminant -d can be calculated 

from |𝑢(𝜏2)|.  This involves obtaining a complex number 𝑢(𝜏2) from [1] and converting to |𝑢(𝜏2)| with 

multiplication with the conjugate.  

[9]   g-d = (2/|𝑢(𝜏2)|)1/3 

[10]   g-d
2/2 = (2/|𝑢(𝜏3)|2)1/3 

Since 𝑢(𝜏1) does not provide a g class invariant, the transforms are used to simplify the calculation of g  

invariants for any integer discriminant.  

For even discriminant -d, the equation for g-d [9], is the same as above but |𝑢(𝜏2)|) is calculated from a 

modified q continued fraction as illustrated below using  the k invariant.      

The k invariant for a discriminant d is found by solving for k using the elliptic integral of the first kind 

discussed in Chapter 45 

[11]      (EllipticF[π/2, 1 – k2]/(EllipticF[π/2, k2]))2 = d 

Alternatively, k is found from the QCF for 𝑢(𝜏1) and the q transform L2 above directly provides a value 

of k. 

[12]   k = L2[ 𝑢(𝜏1)]1/2 

This k is equivalent to the one found using the elliptic integral [11].  The advantage for this q transform is 

its operation works for both even and odd values of the discriminant.  The k invariant is then applied to 

solving for |𝑢(𝜏2)|. 

 For odd values of d:  

[13]    |𝑢(𝜏2)| = √2 ∗ (𝑘 ∗ (√1 − 𝑘2))1 4⁄  

For even values of d:  

[14]    |𝑢(𝜏2)| = √2 ∗ (𝑘 (1 − 𝑘2)⁄ )1 4⁄  

The g class invariant for either even or odd d is calculated from [9] or [10]:      g-d = (2/|𝑢(𝜏2)|)1/3 

For any 𝑢(𝜏1) of integer discriminant d an elliptic integral relation can be found: 

[15]  (EllipticF[π/2, 1 – 𝑢(𝜏1)8]/(EllipticF[π/2, 𝑢(𝜏1)8]))2 /4= d 

Equation [15] verifies that 𝑢(𝜏1) is the correct modulus for 𝜏1. It also provides a method for finding the 

real value 𝑢(𝜏1) without using the QCF!   

The following cascade of transforms can be used for odd d: 

[16]  kd = L2[𝑅[CR[𝑅[𝑢(𝜏1)]]1 2⁄ ]]1 2⁄  
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This kd does not satisfy the elliptic integral equation, however |𝑢(𝜏2)| can be calculated from the 

relation [13] for odd values of d above. This indicates that {k, kd } are two solutions to [13]. 

Combination of the above equations provides simple equations for finding any g class invariant for a 

given d: 

For odd values of d: 

[17]    g-d = 21 6⁄ ∗ ((1 − L2[𝑢(𝜏1)])L2[𝑢(𝜏1)])−1 24⁄  

For even values of d: 

[18]    g-d = 21 6⁄ ∗ (
√L2[𝑢(𝜏1)]

1−L2[𝑢(𝜏1)]
)−1 12⁄  

The range of 𝑢(𝜏1) decreases from about 0.65 for d = 1 to 0 as d increases to infinity. The two graphs 

below of even (blue) and odd d, illustrate how the g class invariant increases as d increases and as 𝑢(𝜏1) 

decreases. 

  

Some inverse relations 

[19]  𝑢(𝜏1) = R[|𝑢(𝜏2)|] = RL[k2] 

[20]  |𝑢(𝜏2)| = CR[RL[k2]] 

[21]  RL[k-d
2] = R[CR[𝑢(𝜏1)]]1/2 

[22]  k-d
2 =  L2[R[CR[R[2/g-d

3]]1/2]]1/2  

Integer Sequence Structure of q transforms L2 and RL. 

Conversion of 𝑢(𝜏1) to the k invariant using the transform L2 is associated with several integer 

sequences found in OEIS3.  Let n be an integer > 1.  The following sequence is obtained from L2[n]1/2 for 

n=1 to n = 20. 

[23] 
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8
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,
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The numerator is OEIS A181900  a(n)= A022998(n)*n where A022998(n) is the sequence defined if n is 

odd then n, otherwise 2n.  For example, if  n = 12 then a(12) = (2*12)*12 = 288.  This sequence may 

explain why |𝑢(𝜏2)| obtained from [12] is dependent on whether the discriminant d is even or odd. The 

sequence is also closed for multiplication; (a(2)*a(3) = a(6)). 

The denominator sequence is not found in OEIS, but it can be deduced that it is the largest-odd divisor 

of n4 + 1.  For example, if  n = 9 then 94+1=6462 and its largest- odd divisor is 3281. 

The following sequence is obtained from L2[n1/2] for n=1 to n = 20. 

[24] 

 

{1,
16

25
,

9

25
,

64

289
,

25

169
,

144

1369
,

49

625
,

256

4225
,

81

1681
,

400

10201
,

121

3721
,
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21025
,

169

7225
,

784

38809
,

225

12769
,

1024

66049
,

289

21025
,

1296

105625
,

361

32761
,

1600

160801
} 

The numerator is OEIS A154615 a(n)= A022998(n)2 where A022998(n) is the sequence defined above; if 

n is odd then n, otherwise 2n.  for example, if  n = 12 then a(12) = (2*12) 2 = 576.  This sequence may 

also explain why  |𝑢(𝜏2)|1/2 is dependent on whether the discriminant d is even or odd. This sequence is 

also closed for multiplication; (a(3)*a(4) = a(12)). 

The denominator sequence is found in OEIS  A228564 when taking the square root of [24]; 

{1,5,5,17,13,37,25,65,41,101,61,145,85,197,113,257,145,325,181,401} 

it is the largest-odd divisor of n2 + 1. For example, if  n = 9 then 92+1=82 and its largest- odd divisor is 41. 

The two transforms RL[n]1/2and RL[n1/2] both result in a series of “1’s”, in the second case requiring 

multiplication by the  conjugate.  The transform  RL[1/n]*Conjugate[RL[1/n]] results in a series of real 

solutions to the equations z4- (4(n)-2)*z2+1=0.  The equation substituting 𝑢(𝜏1) for n,  z4- (4(𝑢(𝜏1))-

2)*z2+1=0 , when solved produces two unique real solutions zi such that L2[L2[zi
1/2]]1/2 = k. 

Other transformations with real numbers are described in Chapter 32. The  q transform formula above 

can be verified from examples shown in Chapters 28 through 32 of The Perrin Chalkboard. 
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